Microwave Spectrum and Barrier to Internal Rotation in CH₃COC¹⁵N

G. K. Pandey * and H. Dreizler

Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel

(Z. Naturforsch. 32 a, 761-764 [1977]; received May 14, 1977)

The ground state rotational spectra of the ¹⁵N isotopic species of acetyl cyanide have been measured in the region from 8 to 40 GHz. The rotational and centrifugal distortion constants have been determined by a least squares fit to about 38 transition frequencies with $J \leq 14$. The potential barrier parameter V_3 and the angle α between the top axis and the 'a-axis' have been determined by a least squares of the (A-E) splittings of about 27 transitions. The methyl top moment of inertia was fixed at 3.14 amu Ų.

Introduction

The first microwave spectroscopic studies of acetyl cyanide were done by Krisher and Wilson 1 and by Nelson and Pierce 2. Recently, interest in this molecule has revived with an aim of testing the applicability of the rigid frame-rigid top (RF-RT) model to describe the rotational spectra of the molecule in the excited torsional and vibrational states. Scappini et al.3-5 have presented an analysis of the rotational spectrum of the normal species of the molecule in the ground, first excited torsional and first excited vibrational (CCN in plane bending) state. They concluded that while the RF-RT model can successfully explain the spectrum in the ground state, it fails completely to account for the observed spectra simultaneously in the ground and two above mentioned excited states. The main reason of the failure of the RF-RT model is an interaction between the torsional and the vibrational levels, which depends partly on their energy difference. An extension to the RTV (Rotation-Torsion-Vibration interaction) model, which differs from the RF-RT model by including one additional vibrational degree of freedom (nearest to the torsion in energy; in this case the CCN in plane bending) was found to be adequate in describing the three spectra of the molecule simultaneously.

The present ground state study of the CH₃COC¹⁵N was undertaken with the following points in mind.

i) To prepare the basis for the study of excited torsional and vibrational state spectra of the mole-

Reprint requests to Prof. Dr. H. Dreizler, Abteilung Chemische Physik im Institut für Physikalische Chemie der Universität Kiel, Olshausenstr. 40-60, *D-2300 Kiel.** On leave from Physics Department, University of Allahabad, Allahabad 211002, India, Alexander von Humboldt Fellow.

cule. This, in coordination with the excited torsional and vibrational state spectra of the normal species of the molecule ⁴ could be used to check more critically the validity of the RTV model. [Hamiltonian (2) of Reference ³.]

ii) To get the rotational constants of one more isotopic species of the molecule, which along with the previously determined ones ^{1, 3} could be used to derive a more reliable structure of the molecule.

Experimental

The microwave spectrum was recorded with a conventional 33 kHz Stark modulation spectograph employing phase stabilized BWO's as radiation sources and an automatic system of recording the frequency markers 6 . The spectrograph is equipped with an eight meter absorption cell and is operating in the range from 8 to 40 GHz. The measurements were carried out at a temperature of about $-50\,^{\circ}\mathrm{C}$ and at a pressure of $1-5\,\mathrm{mTorr}$. The frequency measurements are believed to be accurate within $\pm\,30\,\mathrm{kHz}$. For the quick assignment of the spectra, use was also made of a radio frequency-microwave double resonance (RF-MW-DR) spectrograph, described in detail elsewhere $^{7,\,8}$.

The ¹⁵N species of acetyl cyanide was prepared ⁹ by adding acetyl bromide to dry CuC¹⁵N contained in an ice cooled ampul. Sufficient dry cyclohexane was added to wet all the cuprous cyanide and the ampul was sealed off. After standing for three days at room temperature, the content was distilled in vacuum.

Ground State Spectrum

The ground state spectrum was readily assigned with the help of RF-MW-DR experiments. For setting the approximate pump frequency and the approximate region, where the signal should be

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License. searched, use was also made of the ' r_0 -structure' of the molecule, which was calculated with the help of the rotational constants of the previously studied isotopic species of the molecule. It had been the general experience that for predicting the spectrum of a new isotopic species of the molecule, ' r_0 -structure' is the better choice. The assigned lines were later also confirmed by their characteristic Stark patterns. Table 1 gives the details of the RF-MW-DR

Pump	Signal
4 ₃₁ -4 ₃₂ (69.2 MHz for A and 97.6 MHz for E transition)	$5_{32} - 4_{31}$ $5_{33} - 4_{32}$ $4_{31} - 4_{22}$ $4_{32} - 4_{23}$ $4_{31} - 3_{30}$
$3_{30}-3_{31}$ (10.0 MHz for A and 69.8 MHz for E transition)	$\begin{array}{c} \mathbf{4_{32}} - \mathbf{3_{31}} \\ \mathbf{4_{32}} - \mathbf{3_{31}} \\ \mathbf{4_{31}} - \mathbf{3_{30}} \\ \mathbf{4_{32}} - \mathbf{3_{31}} \\ \mathbf{3_{30}} - \mathbf{3_{21}} \\ \mathbf{3_{31}} - \mathbf{3_{22}} \end{array}$

Table 1. Radio frequency — microwave double resonance connections used for the assignment of the ground state spectra.

Table 3. Ground state parameters derived from the semi-rigid model according to Watson $^{\rm c}$.

A (MHz)	10183.659 ± 0.008
B (MHz)	4011.073 ± 0.002
C (MHz)	2925.282 ± 0.002
dJ (MHz)	$\{-0.2145 \pm 0.03\} \cdot 10^{-2}$
d_{JK} (MHz)	-0.1271 ± 0.006
d_K (MHz)	-0.2749 ± 0.01
d_{WJ} (MHz)	$\{+0.8450\pm0.08\}\cdot10^{-3}$
d_{WK} (MHz)	$\{+0.4003\pm0.01\}\cdot10^{-1}$
I_a (amu Å ²) a	49.64139
I_b (amu Å ²) a	126.0339
I_C (amu Å ²) a	172.8145
$I_a + I_b - I_c$ (amu Å ²)	2.86079
RMS deviation b (MHz)	0.035

 $^{^{\}rm a}$ Conversion factor $=5.05531\cdot 10^{5}\,{\rm MHz}.$ amu Å $^{\rm 2}$ Mass scale $^{\rm 16}{\rm O}.$

experiments performed. It must be mentioned that because of the influence of the linear term in the coupling of overall and internal rotation angular momenta, the values of the pump frequencies were sometimes appreciably different for the A and E states of a transition. Therefore, for the E transitions, both the pump and the signal frequencies had to be located by a double search procedure.

The measured ground state rotational transitions are detailed in Table 2. The rotational constants are determined by fitting the observed frequencies (A species) to an eight parameter centrifugal rotor according to Watson ¹⁰. The formula for the energy eigenvalue for a rotational level is given by

$$W = W_0 - d_J J^2 (J+1)^2 - d_{KJ} J (J+1) \langle P_z^2 \rangle - d_K \langle P_z^4 \rangle - d_{WJ} W_0 J (J+1) - d_{WK} W_0 \langle P_z^2 \rangle ,$$

the symbols having their usual meanings. The rotational constants, centrifugal distortion constants and the moments of inertia are given in Table 3.

Table 4. Observed and calculated internal rotation splitting of the ground state transitions of CH₃COC¹⁵N molecule. All splittings are in MHz.

Transition	Observed	Calculated	Deviation
$J_{K-K_+}-J'_{K-K'_+}$	splitting a	splitting a, b	
$2_{20} - 2_{11}$	+ 2.79	+ 2.594	0.196
$2_{21}^{20}-2_{12}^{11}$	-6.13	-5.744	0.386
$2_{11} - 2_{02}$	-1.02	-0.937	0.083
$2_{12}-1_{01}$	-0.72 c	-0.695	0.025
$2_{11}^{12} - 1_{10}^{10} \\ 2_{02} - 1_{01}^{10}$	-1.01	-0.955	0.055
$2_{02} - 1_{01}$	-0.55 c	-0.543	0.007
$3_{30} - 3_{21}$	+26.41	+26.298	0.112
$3_{31} - 3_{22}$	-31.51	-31.227	0.283
$3_{12} - 3_{03}$	-1.67	-1.578	0.092
$3_{13} - 2_{02}$	− 0.60 c	-0.544	0.056
$3_{03} - 2_{12}$	-0.50 c	-0.510	0.010
$3_{22} - 2_{21}$	+ 2.19	+ 2.140	0.050
$3_{21} - 2_{20}$	-4.37	-4.135	0.235
$3_{03} - 2_{02}$	-0.67 c	-0.663	0.007
$4_{31} - 4_{22}$	+11.28	+11.590	0.310
$4_{22} - 4_{13}$	0.83 с	-0.759	0.071
$4_{13} - 4_{04}$	-2.72	-2.570	0.150
$4_{04} - 3_{13}$	-0.76 c	-0.775	0.015
$4_{31} - 3_{30}$	-17.13	-16.877	0.253
$4_{32} - 3_{31}$	+14.35	+14.273	0.077
$4_{14} - 3_{13}$	-0.44 c	-0.482	0.042
$5_{22} - 5_{14}$	-1.31	-1.222	0.088
$5_{14} - 5_{05}$	-4.07	-3.893	0.177
$5_{32}-4_{31}$	-11.72	-11.495	0.225
$6_{24} - 6_{15}$	-2.15	-2.001	0.149
$6_{15} - 6_{06}$	-5.75	-5.397	0.353
$6_{24} - 5_{33}$	+ 2.56	+ 2.791	0.231
$7_{25}^{24} - 7_{16}^{33}$	-3.39	-3.219	0.171
$7_{25} - 6_{34}$	-1.11	-1.143	0.033
$8_{35}^{23} - 8_{26}^{34}$	-0.65 c	-0.794	0.144
$8_{26}^{33} - 8_{17}^{20}$	-5.06	-4.876	0.184
$8_{26}^{26} - 8_{27}^{17}$	-6.42	-6.139	0.281
$9_{36} - 9_{27}$	-1.58	-1.719	0.139
$9_{36} - 9_{27} $ $9_{36} - 8_{45}$	+ 3.94	+ 4.001	0.061
$10_{37}^{36} - 10_{28}^{43}$	-3.05	-3.247	0.197
		RMS deviation	= 0.170

a Splitting mentioned as $(v_{\rm E}-v_{\rm A})$.

b The RMS deviation to a least square fit of the observed transition frequencies to a rigid rotor is 1.718 MHz.

c In the fitting procedure, the parameters d_{JK}, d_{WK} and d_{WJ} were highly correlated. The highest correlation coefficient was 0.998 and the lowest 0.898.

b Calculated with the help of the internal rotation parameters of Table 5.

c Observed splittings, which are less than 1 MHz are not included in the fitting procedure.

Table 2. Measured ground state rotational transitions of the CH₃COC¹⁵N molecule. All frequencies are in MHz.

Transition $J_{K-K+} - J'_{K-K+}$	Tor- sional species	Observed frequency	Calculated frequency ^a	Devia- tion	Centrifugal distortion correction	Transition $J_{K-K+} - J^{'}_{K-K+}$	Tor- sional species	Observed frequency	Calculated frequency ^a	Devia- tion	Centrifugal distortion correction
220-211	A E	18648.62 18651.41	18648.618	0.002	-0.168	$4_{04} - 3_{13}$	A E	22512.46 22511.69	22512.401	0.059	0.070
$2_{21} - 2_{12}$	A E	21774.84 21768.71	21774.837	0.003	-0.294	$4_{31} - 3_{30}$	A E	28037.91 b 28020.60 b	28037.867	0.043	-1.564
$2_{11} - 2_{02}$	A E	8474.99 8473.97	8475.004	0.014	-0.192	$4_{32} - 3_{31}$	A E	27978.66 b 27993.01 b	27978.652	0.008	-1.541
$2_{12} - 1_{01}$	A E	18959.46 18958.73	18959.454	0.006	-0.050	$4_{14} - 3_{13}$	A E	25338.95 25338.51	25338.958	0.008	-0.104
$2_{11} - 1_{10}$	A E	14958.38 14957.37	14958.355	0.025	-0.145	$5_{23} - 5_{14}$	A E	16709.09 16707.78	16709.105	0.015	-1.572
$2_{12} - 1_{11}$	A E	12786.81 12786.81	12786.874	0.064	-0.044	$5_{14} - 5_{05}$	A E	$17837.05 \\ 17832.98$	17837.040	0.010	-1.193
$2_{02} - 1_{01}$	A E	13741.69 13741.14	13741.677	0.013	-0.004	$5_{32} - 4_{31}$	A E	35238.13 b 35226.41 b	35238.130	0.000	-2.038
$3_{30} - 3_{21}$	A E	33021.32 b 33047.73 b	33021.331	0.011	-0.584	$6_{24} - 6_{15}$	A E	17508.59 17506.44	17508.592	0.002	-2.303
$3_{31} - 3_{22}$	A E	33654.17 b 33622.66 b	33654.214	0.044	-0.676	$6_{15} - 6_{06}$	A E	23104.24 23098.49	23104.252	0.012	-1.710
$3_{12} - 3_{03}$	A E	$10527.92 \\ 10526.25$	10527.922	0.002	-0.427	$6_{24} - 5_{33}$	A E	13748.90 13751.46	13748.903	0.003	0.620
$3_{13} - 2_{02}$	A E	24320.63 24320.03	24320.604	0.026	-0.114	$7_{25} - 7_{16}$	A E	19470.30 19466.90	19470.264	0.036	-3.160
$3_{03} - 2_{12}$	A E	15079.36 15078.86	15079.360	0.000	0.036	$7_{25} - 6_{34}$	A E	23674.39 23673.28	23674.408	0.018	1.119
$3_{22} - 2_{21}$	A E	$20808.59 \\ 20810.78$	20808.563	0.027	-0.501	$8_{35} - 8_{26}$	A E	25903.35 25902.70	25903.400	0.050	-5.914
$3_{21} - 2_{20}$	A E	21320.40 21316.03	21320.404	0.004	-0.577	$8_{26} - 8_{17}$	A E	22739.10 22734.04	22739.100	0.000	-4.136
$3_{13} - 2_{12}$	$f A \ E$	$19102.70 \\ 19102.70$	19102.827	0.127	-0.068	$8_{26} - 8_{27}$	A E	$17327.43 \\ 17321.01$	17327.442	0.012	-2.392
$3_{03} - 2_{02}$	A E	$20297.15 \\ 20296.48$	20297.137	0.013	-0.009	$9_{36} - 9_{27}$	A E	$25293.34 \\ 25291.76$	25293.386	0.046	-7.354
$4_{31} - 4_{22}$	A E	32208.09 b 32219.37 b	32208.010	0.080	-1.308	$9_{36} - 8_{45}$	A E	22905.96 22909.90	22905.959	0.001	3.460
$4_{22} - 4_{13}$	A E	$16847.55 \\ 16846.72$	16847.539	0.011	-0.970	$10_{37}\!-\!10_{28}$	A E	25852.81 25849.80	25852.758	0.052	-8.831
$4_{13} - 4_{04}$	A E	13614.65 13611.93	13614.669	0.019	-0.764	$14_{4,10} - 14_{4,11}$	A E	15112.22 — c	15112.225	0.005	-4.236
								Ī	RMS deviation =	= 0.035 d	

a Calculated with the help of rotational and centrifugal distortion parameters of Table 3.

b Confirmed and measured in RF-MW double resonance experiments.

^c Not measured because of disturbing lines.

d The RMS deviation of a least square fit of the observed transition frequencies to a rigid rotor is 1.718 MHz.

Barrier to Internal Rotation in the Molecule

As has been concluded elsewhere ³, the internal rotation splittings (E-A) of the transitions in the ground state can successfully be interpreted in terms of the rotation-torsion interaction alone (RF-RT model). The vibration interaction term i.e. the non-rigidity of the frame shows observable effects only in the excited state spectra.

The effective Hamiltonian, which has been used to fit the internal rotation splittings can be expressed in the principal axes system as ¹¹

$$\begin{split} H_{v\sigma} &= A P_a{}^2 + B P_b{}^2 + C P_c{}^2 \\ &+ F \sum_{n=1}^2 W_{v\sigma}^{(n)} \left\{ \lambda_a (I_a/I_{aa}) P_a + \lambda_b (I_a/I_{bb}) P_b \right\}^n \end{split}$$

where

 P_a , P_b , P_c are components of the total angular momentum operator (c-axis is perpendicular to the molecular symmetry plane),

$$F = \hbar^2 / (2 r I_a),$$

 $r = 1 - \lambda_a^2 (I_a / I_{aa}) - \lambda_b^2 (I_a / I_{bb}),$

 λ_a , λ_b are direction cosines between the symmetry axis of the top and the a and b principal axes respectively (in this case $\lambda_c = 0$),

 $W_{v\sigma}^{(n)}$ are the *n*th order perturbation coefficients, $s=4\,V_3/(9\,F)$ is the reduced barrier parameter, I_{aa} , I_{bb} , I_{cc} are the principal moments of inertia, A, B, C are the rotational constants,

 I_{α} is the moment of inertia of the top about its symmetry axis.

Table 4 presents the measured internal rotation splitting of the ground state transitions of the molecule. A computer program DIRMAT (Author H. Mäder) was available, which calculates the internal

rotation splittings as a function of s and direction cosine λ_a . This program takes care of the first and second order perturbations and neglects the higher ones. This program in coordination with a general fitting program SPEFIT was used to extract the potential barrier parameter V_3 and the angle between the top axis and the a-axis by making a least squares fit to the observed splittings. The results are given in Table 5. In the fitting procedure I_a was fixed at 3.14 amu Ų. The effect of I_a on the (E-A) splittings is correlated to that of V_3 . Using a separate computer program SPLIKR (Author H. D. Rudolph), it was confirmed that the effect of the fourth order perturbation was within the experimental uncertainty (60 kHz) of the measured splittings.

F (GHz)	166.80
S	33.83 ± 0.07
λ_a	0.5079 ± 0.003
I_lpha (amu Å 2)	3.14 a
V_3 (cal mol ⁻¹)	1210 ± 4
Tilt of the	1.48° b
to axis	

Table 5. Internal rotation parameters.

Acknowledgements

We are thankful to Dr. H. Mäder and Mr. H. Lutz for their help during the course of the present study and to Mr. M. Andolfatto for the preparation of ¹⁵N isotopic species of acetyl cyanide. Thanks are also due to the Rechenzentrum der Universität Kiel, where all the calculations have been done. The financial supports by the Deutsche Forschungsgemeinschaft and Fonds der Chemie are also thankfully acknowledged. One of us (GKP) is also thankful to the Alexander von Humboldt Foundation, Germany for the award of a post doctoral fellowship.

¹ L. C. Krisher and E. B. Wilson, J. Chem. Phys. 31, 882 [1959]; erratum ibid 33, 304 [1960].

² R. Nelson and L. Pierce, J. Mol. Spectroscopy 18, 344 [1965].

³ F. Scappini and H. Dreizler, Z. Naturforsch. 31a, 840 [1976].

⁴ F. Scappini, H. Mäder, and H. Dreizler, Z. Naturforsch. 31 a, 1398 [1976].

⁵ H. M. Heise, F. Scappini, and H. Dreizler, Z. Naturforsch. 31 a, 1408 [1976].

^a Kept fixed as its variation is highly correlated to that of V_3 . I_a value taken from structure (Reference ¹).
^b Towards the C=O bond.

⁶ U. Andresen and H. Dreizler, Z. Angew. Phys. 30, 207 [1970].

⁷ R. Schwarz, Thesis, University of Kiel, Germany 1974.

⁸ F. Scappini and A. Guarnieri, Z. Naturforsch. 27 a, 1011 [1972].

⁹ H. S. Anker, J. Biol. Chem. 176, 1333 [1948].

¹⁰ W. K. G. Watson, J. Chem. Phys. 45, 1360 [1966]; 48, 181 [1968].

¹¹ H. Dreizler, Fortschr. Chem. Forsch. **10**, 59 [1968].